[转载]memcached源码分析之线程池机制(一) – Moon_Bird – 博客园.
已经个把月没有写长篇博文了,最近抽了点时间,将memcached源码分析系列文章的线程机制篇给整出来,在分析源码的过程中参考了网上的一些资源。
该文主要集中于两个问题:(1)memcached线程池是如何创建的,(2)线程池中的线程又是如何进行调度的。一切从源码中找答案。
memcached的线程池模型采用较典型的Master-Worker模型:
(1)主线程负责监听客户端的建立连接请求,以及accept 连接,将连接好的套接字放入连接队列;
(2)调度workers空闲线程来负责处理已经建立好的连接的读写等事件。
1 关键数据抽象
(1)memcached单个线程结构的封装
//memcached线程结构的封装结构
typedef struct {
pthread_t thread_id; /* unique ID of this thread */
struct event_base *base; /* libevent handle this thread uses */
struct event notify_event; /* listen event for notify pipe */
int notify_receive_fd; /* receiving end of notify pipe */
int notify_send_fd; /* sending end of notify pipe */
struct thread_stats stats; /* Stats generated by this thread */
struct conn_queue *new_conn_queue; /* queue of new connections to handle */
cache_t *suffix_cache; /* suffix cache */
} LIBEVENT_THREAD;
这是memcached里的线程结构的封装,可以看到每个线程都包含一个CQ队列,一条通知管道pipe ,一个libevent的实例event_base等。
(2)线程连接队列
/* A connection queue. */
typedef struct conn_queue CQ;
struct conn_queue {
CQ_ITEM *head;
CQ_ITEM *tail;
pthread_mutex_t lock;
pthread_cond_t cond;
};
每个线程结构体中都指向一个CQ链表,CQ链表管理CQ_ITEM的单向链表。
(3)连接项结构体
/* An item in the connection queue. */
typedef struct conn_queue_item CQ_ITEM;
struct conn_queue_item {
int sfd;
enum conn_states init_state;
int event_flags;
int read_buffer_size;
enum network_transport transport;
CQ_ITEM *next;
};
CQ_ITEM实际上是主线程accept后返回的已建立连接的fd的封装,由主线程创建初始化并放入连接链表CQ中,共workers线程使用。
(4)网络连接的封装结构体
/**
* The structure representing a connection into memcached.
*/
//memcached表示一个conn的抽象结构
typedef struct conn conn;
struct conn {
..................
};
由于这个结构太大,就略去中间的成员不展示了,与我们线程池相关的有一个成员则非常关键,那就是state,它是memcached中状态机驱动的关键(由drive_machine函数实现)。
2 线程池的初始化:
main()中线程池初始化函数入口为:
/* start up worker threads if MT mode */
thread_init(settings.num_threads, main_base);
函数的定义在thread.c实现,源码如下所示:
/*
* Initializes the thread subsystem, creating various worker threads.
*
* nthreads Number of worker event handler threads to spawn
* main_base Event base for main thread
*/
void thread_init(int nthreads, struct event_base *main_base) {
int i;
pthread_mutex_init(&cache_lock, NULL);
pthread_mutex_init(&stats_lock, NULL);
pthread_mutex_init(&init_lock, NULL);
pthread_cond_init(&init_cond, NULL);
pthread_mutex_init(&cqi_freelist_lock, NULL);
cqi_freelist = NULL;
//分配线程池结构数组
threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
if (! threads) {
perror("Can't allocate thread descriptors");
exit(1);
}
dispatcher_thread.base = main_base;
dispatcher_thread.thread_id = pthread_self();
//为线程池每个线程创建读写管道
for (i = 0; i < nthreads; i++) {
int fds[2];
if (pipe(fds)) {
perror("Can't create notify pipe");
exit(1);
}
threads[i].notify_receive_fd = fds[0];
threads[i].notify_send_fd = fds[1];
//填充线程结构体信息
setup_thread(&threads[i]);
}
/* Create threads after we've done all the libevent setup. */
for (i = 0; i < nthreads; i++) {
//为线程池创建数目为nthreads的线程,worker_libevent为线程的回调函数,
create_worker(worker_libevent, &threads[i]);
}
/* Wait for all the threads to set themselves up before returning. */
pthread_mutex_lock(&init_lock);
while (init_count < nthreads) {
pthread_cond_wait(&init_cond, &init_lock);
}
pthread_mutex_unlock(&init_lock);
}
线程池初始化函数由主线程进行调用,该函数先初始化各互斥锁,然后使用calloc分配nthreads*sizeof(LIBEVENT_THREAD)个字节的内存块来管理线程池,返回一个全局static变量 threads(类型为LIBEVENT_THREAD *);然后为每个线程创建一个匿名管道(该pipe将在线程的调度中发挥作用),接下来的setup_thread函数为线程设置事件监听,绑定CQ链表等初始化信息,源码如下所示:
/*
* Set up a thread's information.
*/
static void setup_thread(LIBEVENT_THREAD *me) {
me->base = event_init();
if (! me->base) {
fprintf(stderr, "Can't allocate event base\n");
exit(1);
}
/* Listen for notifications from other threads */
//为管道设置读事件监听,thread_libevent_process为回调函数
event_set(&me->notify_event, me->notify_receive_fd,
EV_READ | EV_PERSIST, thread_libevent_process, me);
event_base_set(me->base, &me->notify_event);
if (event_add(&me->notify_event, 0) == -1) {
fprintf(stderr, "Can't monitor libevent notify pipe\n");
exit(1);
}
//为新线程创建连接CQ链表
me->new_conn_queue = malloc(sizeof(struct conn_queue));
if (me->new_conn_queue == NULL) {
perror("Failed to allocate memory for connection queue");
exit(EXIT_FAILURE);
}
//初始化线程控制器内的CQ链表
cq_init(me->new_conn_queue);
if (pthread_mutex_init(&me->stats.mutex, NULL) != 0) {
perror("Failed to initialize mutex");
exit(EXIT_FAILURE);
}
//创建cache
me->suffix_cache = cache_create("suffix", SUFFIX_SIZE, sizeof(char*),
NULL, NULL);
if (me->suffix_cache == NULL) {
fprintf(stderr, "Failed to create suffix cache\n");
exit(EXIT_FAILURE);
}
}
memcached使用libevent实现事件循环,关于libevent,不熟悉的读者可以查看相关资料,这里不做介绍,源码中的这句代码:
event_set(&me->notify_event, me->notify_receive_fd,EV_READ | EV_PERSIST, thread_libevent_process, me);
在me->notify_receive_fd(即匿名管道的读端)设置可读事件,回调函数 为thread_libevent_process,函数定义如下:
static void thread_libevent_process(int fd, short which, void *arg) {
LIBEVENT_THREAD *me = arg;
CQ_ITEM *item;
char buf[1];
//响应pipe可读事件,读取主线程向管道内写的1字节数据(见dispatch_conn_new()函数)
if (read(fd, buf, 1) != 1)
if (settings.verbose > 0)
fprintf(stderr, "Can't read from libevent pipe\n");
//从链接队列中取出一个conn
item = cq_pop(me->new_conn_queue);
if (NULL != item) {
//使用conn创建新的任务
conn *c = conn_new(item->sfd, item->init_state, item->event_flags,
item->read_buffer_size, item->transport, me->base);
if (c == NULL) {
if (IS_UDP(item->transport)) {
fprintf(stderr, "Can't listen for events on UDP socket\n");
exit(1);
} else {
if (settings.verbose > 0) {
fprintf(stderr, "Can't listen for events on fd %d\n",
item->sfd);
}
close(item->sfd);
}
} else {
c->thread = me;
}
cqi_free(item);
}
}
使用setup_thread设置线程结构体的初始化信息之后,现在我们回到thread_init函数,thread_init中接着循环调用(循环调用nthreads次)create_worker(worker_libevent, &threads[i]); 创建真正运行的线程,create_worker是对pthread_create()简单的封装,参数worker_libevent作为每个线程的运行体,&threads[i]为传入参数。
worker_libevent为线程体,源码如下:
/*
* Worker thread: main event loop
*/
static void *worker_libevent(void *arg) {
LIBEVENT_THREAD *me = arg;
/* Any per-thread setup can happen here; thread_init() will block until
* all threads have finished initializing.
*/
pthread_mutex_lock(&init_lock);
init_count++; //每创建新线程,将全局init_count加1
pthread_cond_signal(&init_cond); // 发送init_cond信号
pthread_mutex_unlock(&init_lock);
//新创建线程阻塞于此,等待事件
event_base_loop(me->base, 0); //Libevent的事件主循环
return NULL;
}
worker_libevent中给init_count加1的目的在thread_init函数的这段代码可以看出来,
/* Wait for all the threads to set themselves up before returning. */
pthread_mutex_lock(&init_lock);
while (init_count < nthreads) {
pthread_cond_wait(&init_cond, &init_lock);
}
pthread_mutex_unlock(&init_lock);
即主线程阻塞如此,等待worker_libevent发出的init_cond信号,唤醒后检查init_count < nthreads是否为假(即创建的线程数目是否达到要求),否则继续等待。 至此,线程池创建的代码已分析完毕,由于篇幅较长,将分析线程池中线程的调度流程另立一篇。
Mikel